Al-Au-Cu (Aluminum-Gold-Copper)

V. Raghavan

Recently, [2002Lev] and [2003Lev] investigated the phase equilibria in this system and presented an isothermal section at 500 °C and a vertical section at 76 mass% Au.

Binary Systems

The Al-Au system [2005Oka] depicts the following intermediate phases: AuAl₂(C1, CaF₂-type cubic), AuAl (AuAl-type monoclinic), Au₂Al (α , β , and γ modifications with MoSi₂-type or related structures), Au₈ Al₃ (rhombohedral, space group $R\bar{3}c$), Au₄Al (cubic, space group $P2_13$), and β (80-81.2 at.% Au; bcc). The Al-Cu phase diagram [1998Liu] depicts a number of intermediate phases: CuAl₂ (θ , C16-type tetragonal), CuAl (η_1 , orthorhombic), CuAl (η_2 , monoclinic), Cu₅Al₄(LT) (ζ_2 , orthorhombic), ϵ_1 (bcc), ε_2 (*B*8₂, Ni₂In-type hexagonal), Cu₃Al₂ (δ , rhombohedral), Cu₉Al₄(HT) (γ_0 , D8₂, Cu₅Zn₈-type cubic), Cu₉Al₄(LT) (γ_1 , $D8_3$ -type cubic), and Cu₃Al (β , bcc). In the above, HT = high-temperature and LT = low-temperature. Au and Cu form a continuous face-centered cubic (fcc) solid solution at high temperatures. At lower temperatures, at least three ordered structures Au₃Cu (L1₂, AuCu₃-type cubic), AuCu-I ($L1_0$, AuCu-type tetragonal), and AuCu₃-I ($L1_2$ -type cubic) are known with formation temperatures of 240, 385 and 390 °C respectively [Massalski2].

Ternary Phase Equilibria

With starting metals of at least 99.9% purity, [2002Lev] arc-melted or air-melted about 50 alloys. The alloys were annealed at 500 °C for 2 h and quenched in ice-water or icebrine mixture. [2002Lev] pointed out that the annealing time of 2 h corresponds to the cast-and-solution-anneal kind of treatment and may or may not have produced the equilibrium structures. The isothermal section at 500 °C constructed by [2002Lev] is shown in Fig. 1. A ternary phase labeled β with the nominal formula AlAu₂Cu with the B2type of ordered bcc structure is stable below about 800 °C in an approximately-triangular region having the coordinates of $Al_{1.08}Au_{1.96}Cu_{0.96}$, $Al_{0.68}Au_{2.12}Cu_{0.80}$ and Al_{1.0}Au_{1.0}Cu₂ [2002Lev]. The ternary phase β , the binary phaseAu₄Al (labeled as β by [2002Lev]) and the binary phase Cu₃Al (also labeled β , stable only above 567 °C) all lie approximately along the 25 at.% Al line, suggesting the

Fig. 1 Al-Au-Cu isothermal section at 500 °C [2002Lev]

Fig. 2 Al-Au-Cu vertical section at ~76 mass% Au [2003Lev]

possibility of a continuous solid solution between them at higher temperatures. Cu₉Al₄(LT) (γ_1) dissolves a large amount of Au, which substitutes for Cu at constant Al content. [2002Lev] found some evidence for the ternary ordering of Au and Cu atoms in the γ_1 -based solid solution. The line corresponding to 75 mass% Au (the 18-carat line) (Fig. 1) passes through the single-phase regions of the ternary β and the γ_1 -based solid solution.

[2003Lev] used about half of the samples prepared by [2002Lev], which had an approximate Au content of 76 mass%. Differential thermal analysis and differential scanning calorimetry were employed at a heating/cooling rate of 5-10 °C per min to identify the thermal arrests. Samples were also annealed at 700, 600, 500, and 400 °C for 2-4 h, followed by ice-brine quenching. The phase equilibria were studied with optical microscopy, x-ray powder diffraction, and energy dispersive spectral analysis. The vertical section constructed by [2003Lev] at ~76 mass% Au is redrawn in Fig. 2.

References

- **1998Liu:** X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, Phase Equilibria in the Cu-Rich Portion of the Cu-Al Binary System, *J. Alloys Compd.*, 1998, **264**, p 201-208
- **2002Lev:** F.C. Levey, M.B. Cortie, and L.A. Cornish, A 500 °C Isothermal Section for the Al-Au-Cu System, *Metall. Mater. Trans. A*, 2002, **33A**, p 987-993
- 2003Lev: F.C. Levey, M.B. Cortie, and L.A. Cornish, Determination of the 76 Mass Percent Au Section of the Al-Au-Cu Phase Diagram, J. Alloys Compd., 2003, 354, p 171-180
- 2005Oka: H. Okamoto, Al-Au (Aluminum-Gold), J. Phase Equilib. Diffus., 2005, 26(4), p 391-393